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Differential Geometric Tools for Image Sensor Fusion

Final Report
AFOSR STTR Phase I contract # F49620-98-C-0047

Diego A. Socolinsky, Lawrence B. Wolff

Equinox Corporation
9 West 57th Street
New York, New York 10019

Abstract

This report describes work performed under AFOSR STTR Phase I contract # F49620-98-
C-0047 from September 1, 1998 through August 31, 1999. We present a new formalism for the
treatment and understanding of multispectral images and multisensor imagery based on first
order contrast information. Although little attention has been paid to the utility of multispectral
contrast, we develop a theory for multispectral contrast that enables us to produce an optimal
grayscale visualization of the first order contrast of an image with an arbitrary number of bands.
We demonstrate how our technique can reveal significantly more interpretive information to an
image analyst, who can use it in a number of image understanding algorithms. Existing grayscale
visualization strategies are reviewed. A variety of experimental results are presented to support
the performance of the new method.

Il Introductién

IChe advent of new remote sensing and imaging technologies provides us with ever increasing vol-
hmes of multispectral data. Faced with this information explosion, it has become necessary to
flevelop methods for analysis of such high dimensional datasets. One key aspect of this process is
he visualization of multispectral data, to be used for photointerpretation. This allows an image

nalyst to determine regions of interest and important features in the image for further analysis
tr’ segmentation. In order to take full advantage of the human visual system, a Red-Green-Blue
tomposite image is usually generated from the data by one of a number of statistical methods which
fve review in section 2. We aim to produce a one-band, grayscale visualization image from a given
nultispectral dataset. We propose to do this in such & way as to preserve as much local image
rontrast ‘feature information’ as possible.

Computation of contrast, which includes computation of gradient and zero-crossings, has been
hised in computer vision as one of the primary methods for extracting grayscale and color features
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16, 2, 4, 10, 6]. It seems plausible, therefore, that the correct way to compare versions of the
ame image in terms of feature information is through their contrast content. Contrast, however, is
efined a priori only for grayscale images, so we cannot readily compare multiband images amongst
themselves or multiband images with grayscale images. The first step is thus to define contrast for
p multiband image. This is achieved in section 3.1 through the introduction of a differential form
bn the image, computed in terms of the spectral map and a metric defined on photometric space.
This reduces to the standard notion of contrast in grayscale images.

Once contrast has been defined for an arbitrary image, it is natural to ask which grayscale image
most closely matches the contrast information of a given multiband image. Or, how should we
fonvert a multiband image to grayscale while preserving as much contrast information as possible?
This problem is taken up in section 4, where we show the mathematical formulation of the problem,
ogether with its solution and experimental results.

It should be noted that the solution to this problem has multiple applications. For the remote
ensing community, this algorithm provides a visualization tool for realizing the full edge infor-
mation content in multispectral images, such as those obtained through satellite imaging. Such
high-dimensional photometric data is pot easily tractable by traditional methods; in this context
pur reduction method yields a useful data analysis tool. In medical imaging, image fusion can be
1sed to simultaneously visualize multiple data modalities such as CT, PET and MRI [19].

ié Review of existing techniques

Perhaps the simplest possible transformation from a multispectral image to a grayscale image is
wveraging of the spectral bands. This produces a visualizable image which contains information
rom all the bands in a unified way. However, as is easily seen, this method fails to take into account
iny measgure of the information content in the dataset. A minor modification can be obtained by
onsidering a weighted average, where different bands will contribute differently to the final result,
-dlepending on some pre-assigned assesment of their relative relevance in the overall image. Since it
ay be difficult or even impossible to determine a priori which bands should be emphasized over
thers, this method suffers from similar problems as unweighted averaging. Furthermore, relative
ayvalues in different bands may be such that features are completely obliterated by this process,
r example consider averaging two black and white checkerboard patterns with grayvalues reversed.

In order to overcome the shortcomings of averaging methods, we can take into account statistical
lJnformavtion about the multispectral image. Principal Component Analysis (PCA) achieves this by
gonsidering an n-band image as a set of vectors in an n-dimensional vector space. A grayscale
Yisualization is obtained from a multipectral image by projecting the entire distribution of spectral
Yalues onto the line spanned by the eigenspace of the covariance matrix with largest eigenvalue,
gnd then perhaps re-scaling the result to fit the dynamic range of the output device (printer,
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Figure 1: Angle between diagonals and coordinate axes as a function of spectral dimension.

nonitor, etc). This technique has been extensively used for visuslization of remote sensing imagery
13], as well as multimodal medical imaging [18]. The difference, between PCA and weighted
pveraging is that the line onto which we project is chosen ahead of time in the latter, whereas
n the former it is determined by the global statistics of the particular image at hand. However
pince both methods have a common geometric foundation, they share a common problem. To see
this clearly we resort to the following argument [12]. It is easy to see (Figure 1) that the cosine
pf the angle 8 between any diagonal vector in an n-dimensional vector space and any one of the
foordinate axis ig given by cos(8) = ﬁ Hence as the dimension increases, diagonals tend to become
prthogonal to the coordinate axes. It follows that upon projecting the spectral measurements
to a fixed ‘axis or a principal axis in photometric space, the contrast between adjacent pixels is
glways foreshortened, and it follows from the previous remark that this phenomenon becomes more
evere as the dimensionality of the data increases. Any method based on linear projections will be
pdversely affected by this situation.

Multiresolution methods based on pyramidal decompositions [22, 3, 21} and wavelet transforms
] have been reported. A common feature to all these methods is a selection rule which determines
hich band of the multiband image is ‘most relevant’ in a neighborhood of a given pixel; the features
f the selected band are then incorporated into the fused image through various procedures. By
sing such a selection rule; these methods implicitly.assume that there is only one dominant band at
ach pixel. It is well-known that multispectral imagery often exhibits large inter-band correlation,
this assumption is often violated. The consequence is that such methods do not allow for small
ut consistent contrast features across different bands to compound and form more salient features
the fused image. The loss of potentia] contrast resulting from such a selection rule is easily seen
be proportional to the square root of the number of bands.

Recently a number of other visualization methods have been proposed, most notably those
Hased on self-organizing maps [1] and optimal projection maps [11]. While very different in their
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ldeas and implementation, both methods rely on global image statistics to produce a linear or
ion-linear projection of multispectral space onto a grayscale axis. The use of global statistics in
pny visualization technique has undesireable side-effects, which we exemplify in Section 4.3.

B Contrast in a multiband image

A standard reference for all geometric notions used in this section is [20].

8.1 The contrast form

By a multiband image, we mean a rectangle QO C R? together with a spectral map s : Q@ — P, where
P" denotes n-dimensional photometric space. We will agsume that P™ is given an ‘extended’ RGB
foordinate system, in which each band takes on values between 0 and M < co. The extension to
pther coordinate systems is straightforward. In this context, a grayscale image is a2 map s : @ — P,
We let P* have an arbitrary Riemannian metric g, which can be used to address the issue of sensor
hoise as in (23, 7], to introduce psychophysically correct metrics 8], or simply to manually influence
he fusion (see example in Section 4.3). We expand on this in section 4.2. Finally, if the different
pands in the image are the result of measurements taken with different sensors and/or at different

imes, then we assume that these images have been properly registered with respect to each other
pnd brought to a common spatial resolution.

For the remainder, let 5 : @ — P” be a multiband image, let p be a point in 2, and v an

bitrary unit vector in R?. In analogy with the grayscale case, we seek to define the contrast in
Eat p in the direction of v as the speed of spectral variation within the image in that direction.

o do so, consider the following construction. Let v : [~€,€] = Q be a curve defined on a small
nterval, such that 4(0) = p and +/(0) = v. The speed of spectral variation at p in the direction
f v is given by the magnitude of the vector s.(v) = jt(s © ¥)(t)|¢=0, as evaluated by the metric
pn. P, Note that since the metric of P* is not assumed to be constant, this magnitude must be
pvaluated with respect to the metric at s(p). In the language of differential geometry, the vector
bo(v) is called the pushforward of v by s, and its expression in local coordinates is given by

3x(v) = Jpu, (1)
vhere Jj, is the Jacobian matrix of s at the point p. Let gq denote the matrix for g at ¢ € P* with

espect to a coordinate system. Then the contrast of s at p in the direction of v is given by the
fiuantity

(Jpv)tgs(p)(']pv) = ‘Ut(J;Jgs(p)Jp)v' (2)
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Let g5 = (J}gs()Jp). It follows from Equation (1) that in a coordinate system the components of
gp are given by

> Osy 03y o
(9p)i5 = kgl(g"”)"‘a_zia?- 0<i,j<2 (3)

Finally, define x%(p) = g; to be the image contrast form of s. Thus the contrast of s at pE€Qin
the direction of v is given by x2(p)(v). Once again, in the language of differential geometry, the
differential form x? is called the pullback of g by s. In a coordinate system, the image contrast form
can be expressed as

2
X2(p) = Y (g8)isdzidz;, (4)
i=1

which upon evaluation on a vector v = (v, v?) yields the non-negative real number

2 n
@) = 3 z(g,@,mg-gggm 5)

£3=1k =1

This differential form encodes all first order contrast information about a multispectral image. Any
false color image visualization whose corresponding image contrast differential form is identical to
fthat for a multispectral image, replicates its first order contrast information.

Note that if all bands are brought to a common resolution prior to the computation of the
contrast form (by re-sampling, interpolation or any other suitable method), then the choice of g is
independent of the original resolution since g is a metric on photometric space, not on the image
plane. However, if one chooses to carry the computations in the original resolutions, then g can
be used to compensate for the disparity, as long as the difference in resolution is uniform in both
bpatial coordinates. Thus, for example if one band has half the resolution another, then we can
pse & metric that assigns the lower resolution band half as much weight as to the other. It is more
ptraightforward and efficient to bring all bands to a common resolution prior to computing the
fontrast form, and so we use this method in general.

From Equation (3) we see that x2(p) is a symmetric matrix with real entries, therefore its
igenvalues are both real and non-negative. Let A, denote the largest eigenvalue of x*(p). We
lefine the absolute contrast of s at p € Q to be equal to V/Ap, and we say that the eigenspace
Ef x2(p) corresponding to A, is the direction of mazimal contrast at p. Note that this direction

oes not have a preferred orientation a priori, i.e. the eigenspace is a line without a preassigned
rientation.

Let us pause for a moment and see how these definitions simplify in the case where Q is a
grayscale image and P! is given the standard Euclidean metric. Using coordinates z, y on  and

5
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letting subscripts denote partial differentiation, we see that the Jacobian matrix of s is (sz sy),
and therefore

2 [ & 383,
X = (S:Sy 35 ) (6)
We can readily compute the eigenvalues of this matrix to be 0 and |Vs[2. Thus ), = |Vs(p)], and
the direction of maximal contrast is the line spanned by Vs(p). Hence we recover the standard
notion of grayscale contrast, modulo orientation. In this case, note that the direction of maximal
contrast can be given the orientation determined by Vs. For a general multiband image, there
is no canonical orientation for the direction of maximal contrast; this constitutes one of the main
differences between multiband and grayscale images in terms of contrast.

It follows from the previous considerations that two images carry the same contrast information
[if and only if they have the same contrast form. Note that the contrast form of a multiband image
will, in general, have two non-zero eigenvalues. Since the contrast form of a grayscale image, shown
jpbove, always has one null eigenvalue, we have that the contrast information in a multiband image

cannot, in general, be exactly reproduced by a grayscale image. This observation will be necessary
Fn section 4.1.

f3.2 The contrast vector field

The definition of contrast given in the previous section is not quite sufficient to tackle the optimal
visualization problem. This is so precisely because, as we noted before, there is no canonical
prientation for the direction of maximal contrast at a given point in 2 multiband image. We must
remedy this by introducing such an orientation in a well-defined manner.

Let Z(p) = dist(0, s(p)), where 0 is the point in P" all of whose coordinates are zero, and dist is
Lhe geodesic distance function for the metric of P*. The function T :  — R is the spectral intensity
unction. Note that in the case of Euclidean photometric space we simply have Z(p) = /> s;(p)?.
0 general, Z induces an ordering on P", given by z > y if I(z) > I(y), for z,y € P. The function

ist could in principle be replaced here by any non-negative function ¢ : P* — R whose level sets
Ere hypersurfaces foliating P”, satisfying the relation ¢=1([0,a]) € $~1([0,5]), for all 0 < a < b.

he spectral intensity defined using ¢ instead of dist would thus induce a different ordering of the
et of calors. :

Now, we construct the contrast vector field V as follows. Let V; be the unique vector of length
/f\‘p along the direction of maximal contrast at p, for which Vv, Z > 0. If P* is given an arbitrary
Riemannian metric, this procedure can be achieved by considering the sign of the Riemannian
ner product between V), and the outward unit normal to the geodesic sphere of radius Z(p) at.
{(p) instead of the sign of (V,Z)(p). If a different function ¢ is chosen, then ‘geodesic sphere’
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Levelxetot 1

'Figure 2: The direction of the contrast vector at p, is the image direction at the point p along the
argest eigenvector of x2, that produces a positive variation in Z.

fhould be replaced by ‘level set of ¢’ in the previous sentence. Essentially, we orient V to point in
he direction of increasing spectral intensity.

It is quite important to allow for different choices of ¢, as can clearly be seen by considering an
¢xample. If we take a 2-band image whose bands are very negatively correlated, the orientation of
/s wWill be inconsistent along image edges. An artificial situation exhibiting this behavior can be
gonstructed by taking the two bands to be f+n and ~ f +75', where f is any intensity function, and 7
nd ' are random gaussian fields representing image noise. In this case, the orientation of V}, using
he ordering induced by the Euclidean metric is entirely dependent on the noise, and completely
nrelated to the image features. One valid choice of ¢ in this case is any of the projections
onstructed in {11] (but note that these projections may not preserve the ‘natural’ relation of dark
dnd bright in the image).

The contrast vector field V constructed above, encodes the first order spectral contrast infor-
Jaation of Q, together with intensity information. It constitutes a bridge between the multispectral
nd grayscale realms.

4+ Grayscale visualization of local contrast

i?r the analytic aspects of this section, the reader may refer to [5]. The numerical methods can be
und in {14].
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4.1 Mathematical formulation

In light of the definitions of section 3.2, the statement of the problem is now the following: Given a
multiband image s : O — P" with contrast vector field V, find the grayscale image whose contrast

vector field is closest to V. Equivalently, we seek the function f : 2 5 R whose gradient is closest
to V.

To find such a function, we would like to solve the equation Vf = V. However, this equation
will in general have no solution, since it follows from the remarks at the end of section 3.1 that V
need not be integrable. This means that in general it will not be possible for a grayscale image to
exactly reproduce the contrast information of a multispectral image. We propose instead to find
the function f for which the following functional is minimized

/Q J195 = vitazay. ™

The Euler-Lagrange equation for this functional can be easily found to be

Af =divV, on 2, (8)
Vi-A=V-7, ondQ,

[where 7 is the outward unit normal to . There is no natural way to assign Dirichlet boundary
ronditions, so we choose Neumann conditions, consistent with the idea that V should approximate
bhe gradient of the solution image intensity function.

We would like to point out that this formulation represents a new paradigm in multispectral
image visualization. The standard approach to the problem has been to seek a projection (usually
inear) from photometric space onto a one-dimensional grayscale axis. Qur formulation omits the
brojection and instead seeks the best grayscale image itself. The main consequence of this is that
fre have much more freedom to reproduce contrast veriations. On the other hand, a side effect is
that pixels with the same photometric values in the multispectral image may not have the same
grayscale value in our visualization. We have not found this to be a problem, since it simply reflects
“fhe fact that in our formulation, contrast is a local quantity. In the conclusion we outline a solution
that produces a unique mapping of grayvalues at the expense of reduced contrast fidelity. Also,
n section 4.3 we show how one can combine the utility of the new method with some desireable
properties of statistical projections, to obtain high-contrast color composites whose color scheme °
provides a unique correspondence between raw photometric values and image colars.

There are a number of methods for the solution of Poisson’s Equation (8) with Neumann
Toundary conditions on a rectangle. A simple iterative scheme based on the standard five-point
:pproximation for the Laplacian can be written for a discrete pixel grid of dimensions [0, I] x [0, J].
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Letting f° be any initial guess, we write
1 .
i = fig+ 7 [Af; - div V)il 9)

for (,7) € [0,1] x [0, J]. For interior pixels (¢,7) € [1,1 —1] x [1,J — 1], we use
Afis=fing + fioi+ flgn + flzm — 4fy . (10)

The divergence term must be discretized appropriately to avoid artifacts in the solution image.
For the Laplacian operator in (10), we construct the contrast vector field using forward difference
derivatives in the computation of x*. The divergence is then computed using backward difference
derivatives of the components of V. In this way we insure that the correct discrete solution is found
in the case where V is itself the gradient of some function.

At the boundary pixels, Equation (10) is undefined. Here, the Neumann condition in (8) is used
to modify (10). For example, if (i,J), 1 <i < I ~1, is a pixel on the lower horizontal boundary
segment of the irnage, the boundary condition becomes f;j41 — fig = Vi?J, which implies the
Laplacian operator

Affy=flas+ s+l + Vi —3fis (11)

The boundary condition can similarly be used to modify the computation of V and div V at bound-
ary pixels. Note that convergence is guaranteed regardless of the initial guess, and all solutions
agree upto an overall additive constant.

A common modification of (9) in the interest of computational speed is the addition of over- or
under-relaxation to speed convergence [14, 15]. In this case (9) becomes

t+1 .
fijt = f:] + 1 (Aft~div V)

1 t+1
i = -af+efi?

(12)

for some choice of relaxation parameter 0 < w < 2. It can be shown [14] that for the discretization
above on the pixel grid [0, I] x [0, J], the ideal relaxation parameter is given by

for _ cos(n/I) + cos(mw/J)

2
W=, P
14+ /1 -p2 2

Since we normally work on large pixels grids with I, J > 100, the relaxation parameter is very close
to 2, and large speed improvement results from over-relaxation.
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1.2 Noisy data

Jlt may be the case that all bands of a multispectral image have comparable resolutions, but still
ach band has different noise characteristics. This may be due to 2 number of reasons: different
echnologies are used for sampling at different wavelengths, penetration of the atmosphere at dif-
Eerent wavelengths is not uniform, cloud cover in a satellite image may introduce noise only in the
visible range, but not in the infrared, etc. In some of these cases, noise characteristics of the sensor
la.t each band may be known a priori. The approach described in [23] allows us to temper the effect
of noise in this situation: the n X m covariance matrix associated to the sensor is computed (or
interpolated) at each point in n-dimensional photometric space, yielding & positive definite bilinear
form which can be thought of as a Riemannian metric on photometric space. This metric encodes
the noige characteristics of the sensor in such a way that unit (in the Euclidean norm) tangent
vectors-in the direction of noisier bands will have shorter lengths than those in the direction of
bands of higher fidelity. We use this as the metric g in Equation (2) and proceed with the rest
of the algorithm with no further changes. The overall effect is to have the higher fidelity bands
contribute more to the grayscale composite than those which are known to be noisier.

If we have 1o a priori knowledge of the sensor noise characteristics, but we assume independent
identically distributed noise in all bands, with zero mean and distribution syminetric about the
mean, then we can use a hybrid of the method above, and band averaging. Let G, be a 2-
dimensional Gaussian distribution with zero mean and standard deviation o. Compute the low-
and high-frequency components of the multiband image s as

lo=Gyxs, and h,=38- G, *s. (13)

Let x2 be the contrast form of the low-pass filtered image /,, and fo be the grayscale fused
visualization resulting from x2, via the method introduced above. Lastly, construct the final
visualization as

1 n
f==2 (ho)i+ fo (14)

i=1

The assumptions on the noise distribution are such that high frequency noise in the first term of
(14) will tend to cancel out, while lower frequency features from each band will combine within the
second term to produce a fusion of the low-pass filtered bands. The parameter o clearly controls
the frequency threshold past which we consider the data to be too noisy, and in the limit as ¢ — 0
we recover the original procedure, with no noise attenuation.

A more involved procedure based on an adaptive metric is developed in [7). A complete descrip-
gion of the method is outside the scope of the current article, but we include an example image here
to demonstrate the effect of the metric in the context of noise suppression. The images in Figure 3
were obtained through the application of the technique introduced in this paper, to a 4-band aerisl

10
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image with rather severe noise corruption. The image in 3(2) was created using & Euclidean metric
whereas the one in 3(b) exploits the adaptive construction in [7].

Figure 3: Fusion of 4-band aerial image corrupted by noise: (a) with Euclidean metric, (b) with
adaptive metric from [7]

4.3 Experimental results

We performed a series of experiments to validate our theoretical approach, using 7-dimensional
data from the EOSAT thematic mapper and 12-dimensional remote sensing imagery, and 210-band
data from the HYDICE project, as well as a variety of multimodal medical images. All the fused
images shown in this section were computed using a Euclidean metric, unless otherwise noted.

Figures 4(a) and 4(b) show the result of applying PCA and our algorithm, respectively, to a
12-band image. A number of corresponding regions have been selected in both images to highlight
some of the differences between them. Note how new features are visible in our visualization in
the areas labeled 1, 2. The continuation of a road which gets lost in the PCA image is visible
in area 4. More contrast detail is present in area 3, to the extent that it is possible to identify
‘a distinctly rectangular region almost invisible in the PCA visualization. Ares 5 shows higher
resolution of objects in the image. The clear advantage of our visualization technique would allow
an image analyst to more accurately and reliably select regions of interest in the image for further
processing by image understanding algorithms. Since these algorithms become significantly more
time consuming as the number of bands grows, the ability to quickly reduce the areas to which
they must be applied results in increased processing efficiency.

11
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Figures 5 and 6 show more detailed views of our methodology at work versus principal com-
bonent enalysis. We can see that not only does our technique highlight more detail, but it even
incovers features that were obliterated by the statistical method. It is hard to overestimate the
hdvantage this affords the image analyst. In Figure 5 we see how a number of small islands along
the coastline of Lake Worth, Florida, dissapear from the statistical visualization, while they are
basily visible in ours. Likewise Figure 6 shows how we recover more of the original man-made
(probably airport runways) and natural structures from a 9 band EOSAT image than PCA.

Figures 7(a) and 7(b) show the results of applying PCA and our algorithm to an artificial movie
sequence produced by sliding a window over area 2 of the 12-band image in Figure 4, respectively.
[First note the greatly enhanced level of festure information conveyed by the images obtained by
bur method. In fact the roads and divisions between land plots are hardly visible in 7(3). We
lalso see that the same physical feature looks different in different frames of the sequence in Figure
7(a). The grayscale values for a given feature do not remain constant through the sequence, as
they depend on the global statistics of the particular image for which the principal components
were computed. We should mention that this shortcoming is not unique to PCA; it affects any
visualization method which exploits the global statistics of the image. In sharp contrast to this

henomenon, the movie sequence produced by our visualization algorithm is consistent in terms of
Erayscale values. This property makes it possible for us to create consistent optimal visualizations
of multispectrsal video. We are not aware of any other methods which are currently capable of this.

Grayscale consistency on overlapping regions is an asset for multispectral image registration
ras well. Many manual and semi-automatic registration methods rely on an operator selecting a
number of matching features from both images. These features are then used as tie-points for a
discrete optimization algorithm. When distinctive features occur across different spectral bands, it
is advantageous for the operator to use band composites for feature selection. However, if statistical
methods are used to create the composites, then the overlapping region between the images may
appear quite different in each image. This renders the tie-point selection process more difficult
and less reliable. By using our visualization algorithm it is possible to obtain images with both
consistent shading in the overlapping region and rich feature content.

Figure 8 shows the relative performance of our method and the multiresolution wavelet method
in [9] for the fusion of chest CT. We used two contrast windows of body CT to produce these
unified visualizations. Note how the wavelet method yields a lower contrast image, in which many
of the details appear washed out, while our method produces crisper detail throughout, No post-
processing was done on either image.

Let us see by example how particular choices of metric in photometric space can be used to
achieve various desired effects. Figure 9 shows three modalities of brain MRI of the same patient.
In Figure 10(a) we have the result of using a Euclidean metric in Equation (5) for the fusion of
these three modalities. Note among other details, how the tumor from 9(b) and the skull from
9(a,c) are both clearly visible. To create the image in 10(b), we used a metric which emphasizes
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contrast in the T2 weighted MRI for dark pixels (10-50 gray counts out of 256), which has the
effect of increasing contrast between gray and white matter in the fused image without affecting, for
example, the visibility of the tumorous lesion. The opposite effect is displayed in the fused image
10(c), Where the metric ignores the contribution of contrast in the T2 weighted band between gray
and white matter. As a result, the gray to white matter contrast in 10(c) is solely dependent on
that in 9(a,c), whereas the visibility of the tumor is due largely to 9(b).

The contrast fusion technique in this paper can also be used to create color visualizations
whose utility surpasses that of current methods. Perhaps the most widely used and acknowledged
procedure for producing color composites which reveal the structure of multi-band remotely sensed
imagery is to combine the top three principal component images. Two standard techniques are to
use the three top principal components as the red, green and blue channels of a color image, or
alternativelly as the intensity, hue and saturation components (in HSV coordinates), in that order
(13]. Figures 11(b) 11(c) show examples of these techniques for a 4-band aerial image (red, green,
blue and near-infrared), while 11(a) shows the three bands in the visible spectrum. We can use the
contrast fusion method introduced in this article to create the intensity band of a color composite
in the HSV coordinate system. Figure 11(d) shows the result of this procedure using the hue and
saturation components from 11(a), and 11(e) shows the results of using the hue and saturation
from 11(b). In both cases we see that the quality of the resulting color composite is improved by
the addition of the contrast fused image as an intensity component. Most notably, in both cases
it becomes easier to discriminate trees from their shadows and their surrounding background. In
Figure 11(e), the image aquires a more ‘natural’ look, and the road markings become visible.

In terms of computational time, the algorithm is rather efficient. For example, for a 4-band
image measuring 500 x 500 pixels, the time to complete 30 iterations of (12) is just 2.7 seconds
on a Pentium III processor at 700Mhz. While our theoretical formulation requires (12) to reach
p steady state, it is usually the case that visually acceptable results are reached quite quickly,
E.nd further iteration adds imperceptible changes to the fused image. Note that the computational

cheme proposed is of quadratic order in the number of bands and of linear order in the number of
image pixels.

5 Conclusion

Che need for image fusion techniques is now greater than ever. Proliferation of imaging modali-
ies and sensor technologies continues to flood image analysts with increasing amounts of digital
nformation for processing. New and effective visualization methods that reduce the workload and
ncrease the efficiency of analysts constitute therefore a crucial area for algorithm development.

In this paper, we presented an analytic definition of contrast applicable to a general multiband
mage and showed how our definition agrees with the standard one in the case of a grayscale

13
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image. The problem of grayscale visualization with optimal contrast was stated then in terms
of an image contrast vector field, which allowed us to obtain a clean mathematical formulation.
The instantiation of this formulation yields an algorithm capable of producing consistently high
quality visualizations of multiband images. The enhanced feature content of these visualizations
is a powerful aid for the image analyst, who can more effectively select regions of interest or
distinctive image features for further Processing by image understanding algorithms. The range of
I?pplicability extends from automatic target recognition and aerial mapping to detection of brain

esions in medical Imaging. A number of examples and comparisons support our performance claim,
and attest to the utility of our formalism.

Two directions for further research appear necessary. First, it would be interesting to solve
the reduction problem not for an optimal grayscale image, as we have done, but for an optimal
projection 7 : P* — [0, M]. It follows from Equation (8) that the Euler-Lagrange equation for this
problem is A(7 o ¢) = divV. Unfortunately this problem is rather ill-posed, so more constraints
should be introduced in order to solve it in a meaningful way. Of course by solving this problem
fve give up the local consistency property of our method. Regardless, such a solution is relevant in
fases where relative brightness is important in a global sense and there is little or no need for local
Lonsistency on overlapping sub-images. This may be the case for current exploitation of multimodal
nedical imaging of the head, where tissue attenuation is correlated with brightness. Of course, the
olor composites shown in Section 4.3 can also be used in this situation to convey both contrast
g.nd attenuation.

Secondly, it would be desirable to create a hybrid method exhibiting the best qualities of the
multiresolution techniques [22, 3, 21, 9], and the method developed above. A challenging series
pf images are the Ishihara pseudo-isochromatic plates used for testing color blindness [17] (see
igure 12). We see that in these plates, most colored circles are immediately adjacent to white
packground pixels, and not to other colored circles. Thus the short-scale contrast in the image is not
ependent on the respective colors. The eye perceives the larger scale contrast, and so should any
\gorithm which seeks to extend the performance of the human eye beyond the visible spectrum.
f course, by blurring the plates we can create short-scale contrast between the colored areas, and
his is essentially what wavelet-based multiresolution algorithms do. Thus we see that it would
e beneficial to incorporate the best aspects of multiscale techniques with those of the algorithm
troduced in this article. Such a programme is currently underway, and we hope to report on the
esults in the near future.

References

[1] A. Manduca. Multispectral Image Visualization with Nonlinear Projections. IEEE Transac-
tions on Image Processing, 5(10):1486-1490, 1996.

14




(BIKB?;’QBBB 80:21 2124217804 EQUINDOX CORP P&GE 16

;
i
1

(2] D Ballard and C. Brown. Computer Vision. Prentice Hall, 1982.

(3] P. Burt and R. Lolczynski. Enhanced image capture through fusion. In Proceedings of IEEE
! g
4th International Conference on Computer Vision, volume 4, pages 173-182, 1993.

4] J .;Canny. A computational approach to edge detection. JEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 8:679-698, 1986.

(5] R. Courant and D. Hilbert. Methods of Mathematical Physics. Interscience, 1953.

6] A Cumani. Edge detection in multispectral images. CVGIP: Graphical Models and Image
Processing, (53):40-51, 1991.

(7] D A. Socolinsky. A Locally-Adaptive Metric for Contrast-Fusion of Noisy Multimodal Im-
agery. In Proceedings of Signal and Image Processing 2000, Las Vegas, 2000. JASTED.

(8] G. Wyszecki and W. 8. Styles. Color Science: Concepts and Methods, Quantitative Data and
Farmulae. John Wiley & Sons, New York, 1982.

[9] S. K. Mitra H. Li, B. S. Manjunath. Multisensor image fusion using the wavelet transform.
Cdmputer Vision, Graphics, and Image Processing: Graphical Models and Image Processing,
57(3):627-640, 1995.

(10] R. M. Haralick. Digital step edges from zero crossings of second directional derivatives. JEEE
Transactions on Pattern Analysis and Machine Intelligence, 6:58-68, 1984.

[11] G. Harikumar and Y. Bresler. Feature extraction for exploratory'visualiza.tion of vector valued
imagery. IEEE Trans. on Image Processing, 5(9):1324-1334, 1996.

112] D. Landgrebe. On information extraction principles for hyperspectral data. Whitepaper, 1997.

[13] M. Lillesand and R. Kiefer. Remote Sensing and Image Interpretation. John Wiley & Sons,
3rd edition, 1994.

14] W. Press. Numerical Recipes in C. Cambridge University Press, 2nd edition, 1992.

15] J.-L. Lions R. Glowinski and R. Trémoliéres. Numerical ananlysis of variational inequalities.
Norit;h-Holland, Amsterdam, 1981.

16] A. Rosenfeld and A. Kak. Digital Picture Processing. Academic Press, 2nd edition, 1982.
17] S. Ishihara. Tests for colour-blindness. Kanehara Shuppan, Tokyo, 1954.

18] U. Schmiedl, D. A. Orthendahl, A. S. Mark, I. Berry, and L. Kaufman. The utility of principal
component analysis for the image display of brain lesions: A preliminary, comparative study.
Magnetic Resonance in Medicine, (4):471-486, 1987.

15




él;’@?;"?@@@ 88:21 21242170804 EQUINOX CORP PAGE 17

[19] D.. A..Socolinsky and L. B. Wolff. Image fusion for enhanced visualization of brain imaging.
In:Proceedings: SPIE Medical Imaging ’99, San Diego, February 1999.

[20] M. Spivak. 4 comprehensive introduction to differential geometry. Publish or Perish, Houston,
1979. :

[21] S. K. Rogers T. A. Wilson and M. Kabrisky. Perceptual-based image fusion for hyperspectral
data. IEEE Tronsactions on Geoscience and Remote Sensing, 35(4):1007-1017, July 1997.

[22] A. ?Toet. Hierarchical image fusion. Machine Vision and Applications, pages 1-11, March 1990.

(23] L. Wolff and D. Socolinsky. Theory and analysis of color discrimination for the computation
of color edges using camera sensors in machine vision. In Proceedings: &th Congress of the
International Colour Association, pages 515-518, Kyoto, May 1997.

16




p1/07/2000 ©8:21 2124217084

¢f the same image computed through our algorithm.

17

EQUINOX CORP

)
L}

GE

18

(b)

Yigure 4: (a) Grayscale version of 12-band image computed through PCA. (b) Grayscale version
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Figure 5 (a) Grayscale version of 9-band image computed through PCA. (b) Grayscale version of
the same image computed through our algorithm.

Figure 6 (a) Grayscale version of 9-band image computed through PCA. (b) Grayscale version of
the same image computed through our algorithm.

(b)

Figure 7 Visualizations of successive frames of a 12-band image sequence: (a) Through PCA. (b)
Through our algorithm.
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"igure 8: Comparison between (a) wavelet fusion and (b) proposed method, for the fusion of two
ontrast: windows of chest CT.
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